
ModSecurity
Lance Buttars @Nemus801

Updated Slides @
http://www.obscuritysystems.com

Nemus@dc801.org

http://www.obscuritysystems.com
http://www.obscuritysystems.com
http://www.obscuritysystems.com

What is a (Web Application Firewall) or WAF

An application firewall is a form of firewall that controls input, output, and/or
access from, to, or by an application or service. It operates by monitoring and
potentially blocking the input, output, or system service calls that do not meet the
configured policy of the firewall. The application firewall is typically built to control
all network traffic on any OSI layer up to the application layer. It is able to control
applications or services specifically, unlike a stateful network firewall, which is -
without additional software - unable to control network traffic regarding a specific
application. There are two primary categories of application firewalls,
network-based application firewalls and host-based application firewalls -
Wikipeda

http://en.wikipedia.org/wiki/Application_firewall
http://en.wikipedia.org/wiki/Application_firewall

Quote from Infosecinstitute
“In today’s world, over 70% of all attacks carried out are done so at the web
application level, so we need to implement security at multiple levels, as
organizations need all the help they can get in making their systems secure. Web
application firewalls are deployed to establish an external security layer that
increases security and detects and prevents attacks before they reach the web
application”

http://resources.infosecinstitute.com/configuring-modsecurity-firewall-owasp-rules/

What can ModSecurity Do?
● Real-time application security monitoring and access control.
● Virtual Patching.
● Full HTTP traffic logging.
● Continuous passive security assessment.
● Web Application Hardening.

https://modsecurity.org/about.html

https://modsecurity.org/about.html
https://modsecurity.org/about.html

Install ModSecurity on Centos

sudo yum install epel #Fedora third party repo

sudo yum install mod_security

sudo httpd -M | grep security

Download OWASP Core Rule Set
sudo mkdir /etc/httpd/crs

cd /etc/httpd/crs

sudo wget https://github.com/SpiderLabs/owasp-modsecurity-crs/tarball/master

sudo tar -xvf master

sudo mv SpiderLabs-owasp-modsecurity-crs-* owasp-modsecurity-crs

https://github.com/SpiderLabs/owasp-modsecurity-crs/tarball/master

Enable Rules
cd owasp-modsecurity-crs/

sudo cp modsecurity_crs_10_setup.conf.example modsecurity_crs_10_setup.conf

sudo vim /etc/httpd/conf/httpd.conf

sudo cp -r /etc/httpd/crs/owasp-modsecurity-crs/.
/etc/httpd/modsecurity.d/activated_rules/.

Sudo cp /etc/httpd/crs/owasp-modsecurity-crs/modsecurity_crs_10_setup.conf
/etc/httpd/modsecurity.d/.

sudo systemctl restart httpd

Test ModSecurity

 curl -i http://127.0.0.1/etc/shadow -A “”

tail -n 1 /var/log/httpd/error_log

[Wed Oct 12 00:27:43.861556 2016] [:error] [pid 10655] [client 127.0.0.1] ModSecurity: Access denied
with code 403 (phase 2). Pattern match "^[\\\\d.:]+$" at REQUEST_HEADERS:Host. [file
"/etc/httpd/modsecurity.d/activated_rules/modsecurity_crs_21_protocol_anomalies.conf"] [line "98"] [id
"960017"] [rev "2"] [msg "Host header is a numeric IP address"] [data "127.0.0.1"] [severity "WARNING"]
[ver "OWASP_CRS/2.2.9"] [maturity "9"] [accuracy "9"] [tag
"OWASP_CRS/PROTOCOL_VIOLATION/IP_HOST"] [tag "WASCTC/WASC-21"] [tag
"OWASP_TOP_10/A7"] [tag "PCI/6.5.10"] [tag
"http://technet.microsoft.com/en-us/magazine/2005.01.hackerbasher.aspx"] [hostname "127.0.0.1"] [uri
"/etc/shadow"] [unique_id "V-27v7vMEWFWKKJC8VWrrQAAAAA"]

Configuration Options
mod_security.conf

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual
https://github.com/SpiderLabs/ModSecurity/blob/master/modsecurity.conf-recommended

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual
https://github.com/SpiderLabs/ModSecurity/blob/master/modsecurity.conf-recommended
https://github.com/SpiderLabs/ModSecurity/blob/master/modsecurity.conf-recommended

SecRuleEngine

If you have a pre-existing site run ModSecurity in detection mode first and
read the log files to look for false positives.

SecRuleEngine On|Off|DetectionOnly

Default Content Type of “Text/xml”

SecRule REQUEST_HEADERS:Content-Type "text/xml" \
"id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XM
L"

● Additionally, if you are using other types of HTTP content to send and parse
data, you’ll need to define a parser to interpret the data.

● You will want to replace this with the following.

Enable XML request body parser.
Initiate XML Processor in case of xml content-type

SecRule REQUEST_HEADERS:Content-Type "(?:text|application)/xml" \
"id:'200000',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=XM
L"

Enable JSON request body parser (not turned on by default).

Initiate JSON Processor in case of JSON content-type; change accordingly if your
application does not use 'application/JSON.'

SecRule REQUEST_HEADERS:Content-Type "application/json"
\"id:'200001',phase:1,t:none,t:lowercase,pass,nolog,ctl:requestBodyProcessor=JS
ON"

HTTP Body
SecRequestBodyAccess On

○ Allows ModSecurity to access the request body of HTTP requests. If it's not enabled
ModSecurity won't be able to see any POST parameters

SecRequestBodyLimit 13107200 #LIMIT_IN_BYTES

○ Anything over the limit will be rejected with status code 413 (Request Entity Too Large). There
is a hard limit of 1 GB.

SecRequestBodyNoFilesLimit 131072 #NUMBER_IN_BYTES

○ Maximum request body size we will accept for buffering. If your application support sfile

uploads then the value given on the first line has to be as large as the largest file you want to

accept. The second value refers to the size of data, with files excluded. You want to keep that
value low if possible.

Store up to 131072 bytes of request body data in memory. When the multipart
parser reaches this limit, it will start using your hard disk for
storage. That is slow but unavoidable.

SecRequestBodyInMemoryLimit 131072

What to do if the request body size is above our configured limit.
Keep in mind that this setting will automatically be set to ProcessPartial
when SecRuleEngine is set to DetectionOnly mode to minimize
disruptions when initially deploying ModSecurity.

ProcessPartial Means it will parse and process the first 131072 bytes

SecRequestBodyLimitAction Reject

Verify that we've correctly processed the request body.
As a rule of thumb, when failing to process a request body
you should reject the request (when deployed in blocking mode)
or log a high-severity alert (when deployed in detection-only mode).

SecRule REQBODY_ERROR "!@eq 0" \

"id:'200002', phase:2,t:none,log,deny,status:400,msg:'Failed to parse request
body.',logdata:'%{reqbody_error_msg}',severity:2"

By default be strict with what we accept in the multipart/form-data request body. If the rule
below proves to be too strict for your environment consider changing it to detection-only. You
are encouraged _not_ to remove it altogether.
SecRule MULTIPART_STRICT_ERROR "!@eq 0" \
"id:'200003',phase:2,t:none,log,deny,status:400, \
msg:'Multipart request body failed strict validation: \
PE %{REQBODY_PROCESSOR_ERROR}, \
BQ %{MULTIPART_BOUNDARY_QUOTED}, \
BW %{MULTIPART_BOUNDARY_WHITESPACE}, \
DB %{MULTIPART_DATA_BEFORE}, \
DA %{MULTIPART_DATA_AFTER}, \
HF %{MULTIPART_HEADER_FOLDING}, \
LF %{MULTIPART_LF_LINE}, \
SM %{MULTIPART_MISSING_SEMICOLON}, \
IQ %{MULTIPART_INVALID_QUOTING}, \
IP %{MULTIPART_INVALID_PART}, \
IH %{MULTIPART_INVALID_HEADER_FOLDING}, \
FL %{MULTIPART_FILE_LIMIT_EXCEEDED}'"

ModSecurity encounters what feels like a boundary, but it is not. Such an event may occur
when evasion of ModSecurity is attempted.
SecRule MULTIPART_UNMATCHED_BOUNDARY "!@eq 0" \
"id:'200004',phase:2,t:none,log,deny,msg:'Multipart parser detected a possible unmatched
boundary.'"

PCRE Tuning We want to avoid a potential RegEx DoS condition.
SecPcreMatchLimit 1000
SecPcreMatchLimitRecursion 1000

Some internal errors will set flags in TX and we will need to look for these.
All of these are prefixed with "MSC_". The following flags currently exist:
MSC_PCRE_LIMITS_EXCEEDED: PCRE match limits were exceeded.

SecRule TX:/^MSC_/ "!@streq 0" \
 "id:'200005',phase:2,t:none,deny,msg:'ModSecurity internal error flagged:
%{MATCHED_VAR_NAME}'"

Allow ModSecurity to access response bodies. You should have this directive
enabled to identify errors and data leakage issues. Do keep in mind that enabling
this directive does increase both memory consumption and latency.

SecResponseBodyAccess On

Which response MIME types do you want to inspect? You should adjust the
configuration below to catch documents but avoid static files.

SecResponseBodyMimeType text/plain text/html text/xml application/json

Buffer response bodies of up to 524288 bytes in length.

SecResponseBodyLimit 524288

What happens when we encounter a response body larger than the configured
limit? By default, we process what we have and let the rest through.
That's somewhat less secure but does not break any legitimate pages.

SecResponseBodyLimitAction ProcessPartial

The location where ModSecurity stores temporary files (for example, when
it needs to handle a file upload that is larger than the configured limit).
This default setting is chosen due to all systems have /tmp available, however,
this is less than ideal. It is recommended that you specify a location that's private.

SecTmpDir /tmp/

The location where ModSecurity will keep its persistent data. This default
setting is chosen due to all systems have /tmp available, however, it too should
be updated to a place that other users can't access.

SecDataDir /tmp/

The location where ModSecurity stores intercepted uploaded files. This
location must be private to ModSecurity. You don't want other users on
the server to access the files, do you?

SecUploadDir /opt/modsecurity/var/upload/

By default, only keep the files that were determined to be unusual
in some way (by an external inspection script). For this to work you,
will also need at least one file inspection rule.

SecUploadKeepFiles RelevantOnly

Uploaded files are by default created with permissions that do not allow
any other user to access them. You may need to relax that if you want to
interface ModSecurity to an external program (e.g., an anti-virus).

SecUploadFileMode 0600

Messages at levels 1–3 are always copied to the Apache error log. Therefore
you can always use level 0 as the default logging level in production if you are
very concerned with performance. Having said that, the best value to use is 3.
Higher logging levels are not recommended in production because of load issues.

SecDebugLog /opt/modsecurity/var/log/debug.log
SecDebugLogLevel 0

● 0: no logging
● 1: errors (intercepted requests) only
● 2: warnings
● 3: notices
● 4: details of how transactions are handled
● 5: as above, but including information about each piece of information

handled
● 9: log everything, including very detailed debugging information

Log the transactions that are marked by a rule, as well as those that trigger a
server error (determined by a 5xx or 4xx, excluding 404, level response statuses

SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "^(?:5|4(?!04))"

Log everything modsecurity knows about a transaction.
SecAuditLogParts ABIJDEFHZ

Use a single file for logging. This is much easier to look at, but
assumes that you will use the audit log only occasionally.
SecAuditLogType Serial
SecAuditLog /var/log/modsec_audit.log

Specify the path for concurrent audit logging.
SecAuditLogStorageDir /opt/modsecurity/var/audit/

A: Audit log header (mandatory).

B: Request headers.

C: Request body (present only if the request body exists and
ModSecurity is configured to intercept it. This would require
SecRequestBodyAccess to be set to on).

D: Reserved for intermediary response headers; not
implemented yet.

E: Intermediary response body (present only if ModSecurity is
configured to intercept response bodies, and if the audit log
engine is configured to record it. Intercepting response bodies
requires SecResponseBodyAccess to be enabled).
Intermediary response body is the same as the actual
response body unless ModSecurity intercepts the
intermediary response body, in which case the actual
response body will contain the error message.

F: Final response headers (excluding the Date and Server
headers, which are always added by Apache in the late stage
of content delivery).

G: Reserved for the actual response body; not
implemented yet.

H: Audit log trailer.

I: This part is a replacement for part C. It will log the
same data as C in all cases except when
multipart/form-data encoding in used. In this case, it will
log a fake application/x-www-form-urlencoded body that
contains the information about parameters but not about
the files. This is handy if you don’t want to have (often
large) files stored in your audit logs.

J: This part contains information about the files uploaded
using multipart/form-data encoding.

K: This part contains a full list of every rule that matched
(one per line) in the order they were matched. The rules
are fully qualified and will thus show inherited actions
and default operators. Supported as of v2.5.0.

Z: Final boundary, signifies the end of the entry
(mandatory).

Use the most commonly used application/x-www-form-urlencoded parameter
separator. There's probably only one application somewhere that uses
something else so don't expect to change this value.

SecArgumentSeparator &

Settle on version 0 (zero) cookies, as that is what most applications
use. Using an incorrect cookie version may open your installation to
evasion attacks (against the rules that examine named cookies).

SecCookieFormat 0

Specify your Unicode Code Point.
This mapping is used by the t:urlDecodeUni transformation function
to properly map encoded data to your language. Properly setting
these directives helps to reduce false positives and negatives.

SecUnicodeMapFile unicode.mapping 20127

Improve the quality of ModSecurity by sharing information about your
current ModSecurity version and dependencies versions.
The following information will be shared: ModSecurity version,
Web Server version, APR version, PCRE version, Lua version, Libxml2
version, Anonymous unique id for a host.

SecStatusEngine Off # By default it is off you can turn it on if you like.

Configuring CRS
/etc/httpd/modsecurity.d/modsecurity_crs_10_setup.conf

OWASP CRS Notes
● CRS does not configure ModSecurity features such as the rule engine, the

audit engine, logging etc. This task is part of the ModSecurity initial setup.

● Use recommend configuration from previous slides for initial setup.
○ https://github.com/SpiderLabs/ModSecurity/blob/master/modsecurity.conf-recommended

● SecDefaultAction in CRS will redirect to your local domain when an alert is
triggered. Beware of this as it can cause redirect loops.

● Decide what you want ModSecurity it do when it triggers an activity such as:
○ Drop the request.
○ Return a http status 403.
○ Go to a custom warning page.

https://github.com/SpiderLabs/ModSecurity/blob/master/modsecurity.conf-recommended
https://github.com/SpiderLabs/ModSecurity/blob/master/modsecurity.conf-recommended

CRS Modes

Anomaly mode is where the complete chain of rules is evaluated during each
phase of request processing, and an overall score is generated to decide whether
to block the request or not. If you want to run the rules in Anomaly Scoring Mode
then set The Core Rule Set is best used in anomaly scoring mode.

SecDefaultAction pass

Traditional mode is the alternative to anomaly scoring mode the first rule that
matches with the block action will execute the default action, which is normally set
to “deny”.
SecDefaultAction "phase:1,deny,log"
SecDefaultAction "phase:2,deny,log"

Collaborative Detection Severity Levels - Anomaly mode

These are the default Severity ratings (with
anomaly scores) of the individual rules -

● Critical - Anomaly Score of 5 Is the highest
severity level possible without correlation.
It is normally generated by the web attack
rules (40 level files).

● Error - Anomaly Score of 4 Is generated
mostly from outbound leakage rules (50
level files).

● Warning - Anomaly Score of 3 Is
generated by malicious client rules (35
level files).

● Notice - Anomaly Score of 2 Is generated
by the Protocol policy and anomaly files.

These are the default Severity ratings

SecAction \
 "id:'900001', \
 phase:1, \
 t:none, \
 setvar:tx.critical_anomaly_score=5, \
 setvar:tx.error_anomaly_score=4, \
 setvar:tx.warning_anomaly_score=3, \
 setvar:tx.notice_anomaly_score=2, \
 nolog, \

 pass"

Detection Scoring Initialization and Threshold Levels
If set to "5" it will work similarly to previous Mod
CRS rules and will create an event in the
error_log file if there are any rules that match.

If you would like to lessen the number of events
generated in the error_log file, you should
increase the anomaly score threshold to
something like "20".

This would only generate an event in the
error_log file if there are multiple lower severity
rule matches or if any 1 higher severity item
matches.

SecAction \
 "id:'900003', \
 phase:1, \
 t:none, \
 setvar:tx.inbound_anomaly_score_level=5, \
 setvar:tx.outbound_anomaly_score_level=4, \
 nolog, \
 pass"

Anomaly_score_blocking=on
This is a collaborative detection mode where
each rule will increment an overall anomaly
score for the transaction. (make sure to
uncomment)

● The scores are then evaluated in the
following files:
 Inbound anomaly scores - checked in the
modsecurity_crs_49_inbound_blocking.co
nf file

● Outbound anomaly score s- checked in
the
modsecurity_crs_59_outbound_blocking.c
onf file

SecAction \
 "id:'900004', \
 phase:1, \
 t:none, \
 setvar:tx.anomaly_score_blocking=on, \
 nolog, \
 pass"

Other CRS Rules to Consider
900006 Maximum number of arguments in
max_num_args=255

900007 Limit argument name length
arg_name_length=100

900008 Limit value name length
arg_length=400

900009 Limit arguments total length
total_arg_length=64000

900012 restricted_extensions

restricted_extensions=.asa/ .asax/ .ascx/ .axd/
.backup/ .bak/ .bat/ .cdx/ .cer/ .cfg/ .cmd/ .com/
.config/ .conf/ .cs/ .csproj/ .csr/ .dat/ .db/ .dbf/
.dll/ .dos/ .htr/ .htw/ .ida/ .idc/ .idq/ .inc/ .ini/
.key/ .licx/ .lnk/ .log/ .mdb/ .old/ .pass/ .pdb/ .pol/
.printer/ .pwd/ .resources/ .resx/ .sql/ .sys/ .vb/
.vbs/ .vbproj/ .vsdisco/ .webinfo/ .xsd/ .xsx/', \

Writing Rules

Rule Format
DIRECTIVE VARIABLES OPERATOR ACTIONS

● DIRECTIVE - Action to be taken by mod_security.
● VARIABLES

○ Parsed information from http request and http response.
■ https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables

● OPERATOR
○ Regular expression or some way of interpreting the variables.

■ https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators

● ACTIONS
○ What to do if the rule matches.

■ https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Variables
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Operators
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Actions

Directives
SecAction: Unconditionally processes the action
list it receives as the first and only parameter.

SecDefaultAction: Defines the default list of
actions, which will be inherited by the rules in
the same configuration context.

SecMarker: Adds a fixed rule marker that can be
used as a target in a skipAfter action. A
SecMarker directive essentially creates a rule
that does nothing and whose only purpose is to
carry the given ID.

SecRule Creates a rule.

SecRuleInheritance: Configures whether the
current context will inherit the rules from the
parent context.

SecRuleRemoveById: Removes the matching
rules from the current configuration context.

SecRuleRemoveByMsg: Removes the
matching rules from the current configuration
context.

SecRuleScript: Description: This directive
creates a special rule that executes a Lua script
to decide whether to match or not.

SecRuleUpdateActionById: This directive will
overwrite the action list of the specified rule with
the actions provided in the second parameter.

Phases
Request headers (REQUEST_HEADERS) - Phase 1

Request body (REQUEST_BODY) - Phase 2

Response headers (RESPONSE_HEADERS) - Phase 3

Response body (RESPONSE_BODY) - Phase 4

Logging (LOGGING) - - Phase 5

Example Rules
SecRule REQUEST_URI "sausage" "id:'80000',rev:1,log,deny,msg:'sausage is not
allowed'"

SecRule ARGS:user "@rx ^(test|land)$" "id:'80002',rev:1,msg:'test or land is not
allowed',log,deny"

Example Match of Custom Rule

curl -i http://127.0.0.1/sausage

[Wed Oct 12 03:31:43.428512 2016] [:error] [pid 20462] [client 127.0.0.1]
ModSecurity: Access denied with code 403 (phase 2). Pattern match "sausage" at
REQUEST_URI. [file "/etc/httpd/modsecurity.d/activated_rules/nemus_rules.conf"]
[line "1"] [id "80000"] [rev "1"] [msg "sausage is not allowed"] [hostname
"127.0.0.1"] [uri "/sausage"] [unique_id "V-3m3-CDibgrMZ5scNrNTwAAAAQ"]

Rules in Lua
You can do most things with the ModSecurity ruleset, but it's not a full language.

Writing rules in Lua gives you the power to do whatever you want with a request
that can be done in a full feature programming language.

In ModSecurity Lua is implemented as a rule language add-on.

To use LUA use the SecRuleScript directive.

SecRuleScript /opt/modsecurity/myscript.lua phase:1,log,deny

Lua Script
Lua rule needs an entry point that ModSecurity can find which is the main
function.

function main()
return nil;

end

The above script only returns nil, which means that there is no match.

For a Lua rule to match, it needs to return a message:

function main()
return "Matched";

end

Getvar
A call to the m.getvar() function will retrieve the variable named in the function call

function main()

local remote_ip = m.getvar("REMOTE_ADDR");
local first_name = m.getvar("ARGS.first_name");
local last_name = m.getvar("ARGS.last_name");

if(first_name == ‘’Homer”) then
return “No Homers are allowed” .. remote_ip;

end
return nil;

end

Lua as an ACTION

SecRule ARGS test phase:2,log,pass,exec:/opt/modsecurity/myscript.lua

Handling False Positives
(Exception Handling aka Whitelisting)

https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apac
he-modsecurity-and-owasp-core-rule-set

https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set

Basic Whitelisting

#You can put them inside any Apache config file or a VirtualHost file.

Include /etc/modsecurity/whitelists/application1_list.conf

SecRuleRemoveById 981204

#more specific to a resource
<LocationMatch "^/orders/[0-9]+/approve$">
SecRuleRemoveById 981204
</LocationMatch>
The methods of whitelisting works in the beginning, but overtime you’ll end up with
CRS turned off or broken.

Specific Whitelisting
When ModSecurity is in traditional mode when it hits the first rule that matches
with a block action it will execute the SecDefaultAction, which blocks the request

To prevent a rule from causing a request to be denied, but still make sure it's still
logged, you can enter the SecRuleUpdateActionById and set it to “pass”

SecRuleUpdateActionById 981204 "pass"

Specific Whitelisting part 2
SecRuleUpdateTargetById, SecRuleUpdateTargetByMsg and SecRuleUpdateTargetByTag

“Each ModSecurity rule specifies a list of variables to be tested against the
operator (e.g. @rx, @beginsWith, @streq etc.). If you want to add additional
variables to the list to be inspected, or remove a particular one that is causing a
problem, you can use one of these parameters.” - samhobbs

“The following rule would remove the comment_body argument from the list
inspected by rule 981143:” - samhobbs

SecRuleUpdateTargetById 981143 !ARGS:comment_body

https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-a
nd-owasp-core-rule-set

https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set

Setup Security Page
It is inevitable that users will be blocked when trying to use a legitimate resource. To make things easier
on your clients it's recommended to setup a custom error document when they are blocked. This makes it
less frustrating for them than a standard "500: Internal Server Error" that has no explanation of what
caused the issue.

SecRuleUpdateActionById 981204 "chain,deny,status:501"

also update the outbound blocking rules
SecRuleUpdateActionById 981204 "chain,deny,status:501"

Add the following to your httpd.conf or apache config and create a page for it
ErrorDocument 501 /security-error.php

DetectionOnly mode for new content

When getting started with ModSecurity your
entire site will be in DetectionOnly mode while
you remove false positives.

At some point, you may want to add a new
content to your server after your initial
whitelisting is finished and now have
ModSecurity in blocking mode. In this scenario,
you only want to put the engine in DetectionOnly
mode for just the new content.

SecRule REQUEST_URI
"@beginsWith /new/content" \
 "id:'0000100', \
 phase:1, \
 t:none, \
 ctl:ruleEngine=DetectionOnly, \
 nolog, \
 pass"

Missing HTTP only flag in cookies
If you see a lot of misconfiguration messages that fill up audit log you might have
forgotten to configure your site to set the HTTP only flag in your cookies.

To resolve this issue by changing the following parameter in /etc/php.ini for
Centos.

session.cookie_httponly = 1

 Project Honeypot
 ModSecurity supports Project Honeypot
http://www.projecthoneypot.org/index.php blacklists.

This is a great project and all you need to do to leverage it is sign up for an API
key http://www.projecthoneypot.org/httpbl_api.php

http://www.projecthoneypot.org/index.php
http://www.projecthoneypot.org/index.php
http://www.projecthoneypot.org/httpbl_api.php
http://www.projecthoneypot.org/httpbl_api.php

Recommend Book
The definitive guide to the popular open source
web application firewall, by Ivan Ristić, the
principal author of ModSecurity

https://www.feistyduck.com/books/modsecurity-h
andbook/

https://www.feistyduck.com/books/modsecurity-handbook/
https://www.feistyduck.com/books/modsecurity-handbook/
https://www.feistyduck.com/books/modsecurity-handbook/

Sources
http://blog.modsecurity.org/2007/02/handling-false.html

https://www.feistyduck.com/books/modsecurity-handbook/modsecurity-rule-writing
-workshop.pdf

https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-a
nd-owasp-core-rule-set

http://resources.infosecinstitute.com/configuring-modsecurity-firewall-owasp-rules/

http://stackoverflow.com/questions/33989273/modsecurity-excessive-false-positiv
es/34027786#34027786

https://www.trustwave.com/Resources/SpiderLabs-Blog/Advanced-Topic-of-the-W
eek--Traditional-vs--Anomaly-Scoring-Detection-Modes/

http://blog.modsecurity.org/2007/02/handling-false.html
http://blog.modsecurity.org/2007/02/handling-false.html
https://www.feistyduck.com/books/modsecurity-handbook/modsecurity-rule-writing-workshop.pdf
https://www.feistyduck.com/books/modsecurity-handbook/modsecurity-rule-writing-workshop.pdf
https://www.feistyduck.com/books/modsecurity-handbook/modsecurity-rule-writing-workshop.pdf
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
https://samhobbs.co.uk/2015/09/example-whitelisting-rules-apache-modsecurity-and-owasp-core-rule-set
http://resources.infosecinstitute.com/configuring-modsecurity-firewall-owasp-rules/
http://resources.infosecinstitute.com/configuring-modsecurity-firewall-owasp-rules/
http://stackoverflow.com/questions/33989273/modsecurity-excessive-false-positives/34027786#34027786
http://stackoverflow.com/questions/33989273/modsecurity-excessive-false-positives/34027786#34027786
http://stackoverflow.com/questions/33989273/modsecurity-excessive-false-positives/34027786#34027786
https://www.trustwave.com/Resources/SpiderLabs-Blog/Advanced-Topic-of-the-Week--Traditional-vs--Anomaly-Scoring-Detection-Modes/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Advanced-Topic-of-the-Week--Traditional-vs--Anomaly-Scoring-Detection-Modes/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Advanced-Topic-of-the-Week--Traditional-vs--Anomaly-Scoring-Detection-Modes/

Sources Part 2
https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-Advanced-T
opic-of-the-Week--(Updated)-Exception-Handling/

http://linoxide.com/security/securing-centos-7-modsecurity/

http://resources.infosecinstitute.com/analyzing-mod-security-logs/

https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-Advanced-Topic-of-the-Week--(Updated)-Exception-Handling/
https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-Advanced-Topic-of-the-Week--(Updated)-Exception-Handling/
https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-Advanced-Topic-of-the-Week--(Updated)-Exception-Handling/
http://linoxide.com/security/securing-centos-7-modsecurity/
http://linoxide.com/security/securing-centos-7-modsecurity/
http://resources.infosecinstitute.com/analyzing-mod-security-logs/
http://resources.infosecinstitute.com/analyzing-mod-security-logs/

